If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2-45x+19=0
a = 18; b = -45; c = +19;
Δ = b2-4ac
Δ = -452-4·18·19
Δ = 657
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{657}=\sqrt{9*73}=\sqrt{9}*\sqrt{73}=3\sqrt{73}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45)-3\sqrt{73}}{2*18}=\frac{45-3\sqrt{73}}{36} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45)+3\sqrt{73}}{2*18}=\frac{45+3\sqrt{73}}{36} $
| |x+3|=5x-5 | | 12*h=96 | | 3/5x+1=0 | | (x-1)+(x+6)+2x=41 | | 225x1/3=x | | 2x+13=-15-x | | 17+3m=-1(5-m | | 6x+21=13x-36 | | 17=x-25 | | 8x-3x-7=0 | | 3-(2x+4)=5x-4 | | 2y=y-90 | | T-5t=0 | | 5x-13=-4x-15 | | 11k-23=15k-1 | | 12p-8=30 | | 8^4x+8=15 | | 4x-5=30+3x | | 2(3s+5)=16 | | 6y=-45 | | 2.75−7.75(5−2x)=26 | | 12/100=20/y | | 0.8=50(1-x) | | y=16(2)^2+64(2)+80 | | 2y-3y-2=2 | | 9x2=96x | | 18x^2-51x+25=0 | | 2^4x+6=12 | | 8x+20=4x-12 | | x^2+9=7x | | -8(x+6)=4(4-6) | | 4(2x-4)=6x-14 |